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Abstract. The partial generating function method is applied to the enumeration of lattice 
animals classified according to their valence distribution. This detailed information allows 
one to study the effects of the number and nature of branch points on the properties of 
branched polymers. Several series analysis techniques are applied to the data. Particular 
attention is given to the effects of correction-to-scaling terms. 

1. Introduction 

Lattice animals and related objects have recently been studied in some detail as models 
of branched polymers with excluded volume; of particular interest is the nature of the 
dependence of universality class (uc) on the degree and number of branch points. In 
this paper we address a number of these somewhat similar problems by applying the 
partial generating function method of Sykes (1986a) to the enumeration of three- 
dimensional site and bond animals classified by their valence distribution. In the 
terminology of Wilkinson (1986) these constitute local problems. The data thus 
produced are very detailed and one is able to regroup to consider the better known 
varieties of branched polymer (e.g. c animals, restricted valence animals; see below). 
A selection of the derived data are subsequently analysed and particular reference is 
made to the effects of correction-to-scaling terms. 

Unrestricted (i.e. ordinary) lattice animals were apparently first studied in the 
context of randomly branched polymers by Lubensky and Isaacson (1979). One 
normally assumes that the number of unrestricted lattice animals, A , ( q )  (here n refers 
to the number of sites (bonds) in the site (bond) problem) has the asymptotic form 

A,(q) - n - e { A ( q ) ) "  ( n + a )  (1) 
where A( q )  is the non-universal animal growth parameter and 8 is a universal exponent. 
(The notation indicates that unrestricted animals are here treated as having a maximum 
valence restricted only by the lattice coordination number 4.) There is convincing 
non-numerical evidence (Parisi and Sourlas 1981) that in three dimensions 8 = 1.5 
exactly, which is in accord with numerous series estimates (Gaunt et al 1976, Sykes 
and Glen 1976, Sykes et a1 1976, Gaunt and Ruskin 1978, Gaunt et a1 1979, Whittington 
et a1 1979, Gaunt 1980). 

Domb (1976) has proposed an alternative to (1): 

A,( q )  - n-'{A( q) } "  exp( - F /  n*-') (2) 
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where F and t are additional parameters. This form has received some theoretical 
support (Lubensky and McKane 1981, Harris and Lubensky 1981) and appears to fit 
the data very well (Guttmann and Gaunt 1978, Guttmann 1982). In some sense (2) 
can be thought of as incorporating correction-to-scaling terms, which are normally 
assumed to be present (see, e.g., Margolina et a1 1983). 

For c animals, i.e. animals with precisely c cycles, Whittington et a1 (1983) give 
the equivalent of (1) as 

A , ,  - n - ( ' o - c ) ~ "  0 (3 )  

where Bo and A,, are respectively the exponent and growth parameter for trees (i.e. 0 
animals), and it is thought that eo= 8 (Duarte and Ruskin 1981, Gaunt et a1 1982, 
Ruskin and Duarte 1982, Whittington et a1 1983). 

Animals that are not allowed to contain any vertex with valence greater than some 
specified maximum, i.e. restricted valence animals, have been suggested as models of 
branched polymers with steric hindrance (KertCsz et a1 1982, Stauffer et a1 1982). It 
is assumed that for v s 3  

A , ( u ) -  n - ' { A ( v ) } "  (4) 

where v is the maximum allowed valence. When U = q we simply have (1). Such 
animals embedded in the simple cubic (sc) lattice have been discussed by Gaunt et a1 
(1980). 

The topologies of sufficiently simple molecules are determined by their valence 
distribution. For the number, AT, of lattice animals with some specified topology ( T ) ,  
Gaunt et a1 (1984a, b) assume 

P" ( 5 )  AT - n y T - 1  

where it may be proved that p is the self-avoiding walk (SAW) or neighbour-avoiding 
walk (NAW) growth parameter for weak and strong embeddings, respectively. It has 
been conjectured (Gaunt et al1984a, b) that yT = y + b - 1 where y is the corresponding 
exponent for SAW and b is the number of branches in the topology. The current best 
estimate of y is the renormalisation group (RG) result y = 1.1615 *0.0020 (Le Guillou 
and Zinn-Justin 1980). 

The plan of this paper is as follows: in § 2 details of the application of Sykes' 
partial generating function method to the enumeration of lattice animals classified by 
valence distribution are given. The same is done for bond problems in § 3. A selection 
of the new data is given in (13) ,  (14) and the appendix. In § 4 the results of the series 
analysis are given. Finally, in § 5, some concluding remarks are made. 

2. Site animals 

In this section a site (strongly embedded) lattice animal is specified by the set V =  
{ U ] ,  u 2 , .  . . , uq}, where vi is the number of sites in the cluster of valence (or degree) i. 
The maximum allowed valence is the lattice coordination number q. In the terminology 
of Wilkinson (1986), each A site in an A cluster is labelled in accord with the labelled 
code. The presence of a particular A site in the generating function for all clusters is 
denoted by a factor a ,  where i is the label of the site in question. The presence of a 
B site forming a bridge of multiplicity j is denoted in the generating function by a 
factor x,. 
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As an example consider the symbolic representation of the general three-site A 
cluster in figure 1. Selection of the third-order bridge must carry a factor a1a2a3x3 and 
selection of the second-order bridge { i, j }  must carry a factor aiajx2. By inspection the 
unrestricted dummy enumerator for the cluster in figure 1 is 

G3(P’({l, 2,311) 
= (1 + alxl[ 1 ] ) 9  1 + a2x,[2])‘2’( 1 + a3xl[3]){3’( 1 + a1a2x2[ 1,2]){1921 

x (1 + ala3x2[ 1, 3]){1*3’(1 + a2a3x2[2, 3]){2,3’( 1 + ala2a3x3[lr 2, 3]){’,233’. 
(6) 

Notice that this generating function contains local terms depending on some arbitrary, 
but explicit, labelling (see Wilkinson 1986). 

( 2 1  

T 

1 1 1  (3) 

Figure I.  The general three-site A cluster. 0 denote bridges and 0 denote A sites. 

In the general case it is evident that the substitution for this problem (following 
Wilkinson 1986) is 

where .sj is the j th  element of Ai. Note that setting ai to b and xi to x, for all i, recovers 
equation (6) of Wilkinson (1986). For this problem there are 2n‘A’-1 auxiliary 
polynomials: 

where again, the equations of Sykes (1986a) are recovered after the above simplification 
and identification of the dissimilar terms. 

The question now arises as to how the substitution (7) is used to obtain V. The 
general term in the expansion of (4) in Wilkinson (1986) has the form (using (7)) 

n(A)  n(A)- l  2 a1 xn(A)xn(A)-I.. . Xq(2)xf(1) where the variables p(1)-p(n) 
are the exponents of the variables xI-x, respectively and p ( n  + 1)-p(2n) are the 
a ~ ( 2 n ) a ~ ( 2 n - 1 )  & n + 2 )  p ( n + l )  p ( n )  p(n-1)  
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exponents of the variables a,-a,. The valence distribution is then formed via 

where S,, is the Kronecker delta. 
Using the valence distribution, the following quantities are trivially obtained: 

number of sites s = 1 i q  ( 

number of edges (bonds) e = $ iv, ( 

number of cycles c =  1 + $ 1  (i-2)4. ( 

1 

I 

1 

The last result follows from Euler’s law of the edges. For tree topologies (c = O), the 
number of branches also follows (see Gaunt et a1 1984a). 

Using the substitution (7) and the procedure outlined by Wilkinson (1986) enumer- 
ations have been made for lattice animals, classified by valence distribution, with up 
to and including thirteen sites on both the sc and BCC lattices. Clearly this constitutes 
an enormous amount of data, a selection of which is presented in the appendix and 
below. Note that the data, when regrouped to give the numbers of animals classified 
by bond content (i.e. c animals), confirm the values given by Sykes (1986a) and Sykes 
and Wilkinson (1986a) and are therefore not quoted. These data represent an extension 
by two terms of the one- and two-animal series for the sc lattice (Whittington et a1 
1983). The restricted site animal data for the sc lattice were known to A,,(3), A,,(4) 
and A, , (5 )  (Gaunt er a1 1980), and thus these series have been extended by one, two 
and two terms, respectively; namely 

AI3(3) = 2081 944 173 
AI3(4) = 3227 661 914 A,,(4) = 435 360 707 

A12(5) = 445 967 678 AI3(5) = 3320 593 187. (13) 
To the series for site topologies on the simple cubic lattice studied by Gaunt et a1 
(1984a, b) two terms have been added, namely 

S (  12; 3) = 47 267 532 
S(12;4)= 10604544 S(13; 4)=56339415 
S( 12; 5 )  = 688 230 
S(12; 6) = 10 980 
C( 12; 2) = 94 236 288 
C( 12; 3) = 52 426 416 
B(12; 1,2)=25274544 B(13; 1 ,2)=177 142404 
B(12; 2,2) = 1229 124 
T(1) 12 - - 1296 540 

S (  13; 3) = 232 773 496 

S (  13; 5 )  = 3844 038 
S (  13; 6) = 63 098 
C( 13; 2) = 588 456 696 
C( 13; 3) = 453 238 632 

B(13; 2,2) = 10 112 880 
T\\) = 5946 168 

(for notation see Gaunt et a1 (1984a, b)). Apart from unrestricted animals the only 
strongly embedded animal series to have been previously studied on the BCC lattice 
are trees (Duarte and Ruskin 1981) and c animals (Sykes 1986a). To the former, four 
new terms are given here and, as mentioned above, agreement is found with the latter. 
All other BCC data appear to be new. 

The FORTRAN program used in the expansion of (7), running on the University of 
London’s Cray lS, achieved a counting rate of over 5000 clusters per millisecond for 
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Table 1. Timings for site valence program. 

n(A)  SC BCC 

1 + 2  0.7s 0.8s 
3 0.5s 1.4s 
4 6.9s 29.5s 
5 36.9s 211.3s 
6 2422.2s 23 259.6s 

the BCC lattice. For the sc it was about half of this. The timings are given in table 1. 
Although it is clear that care needs to be exercised when extrapolating these timings, 
it is safe to say that with current methods a large amount of computer time would be 
required in order to derive the data for n = 7. 

3. Bond animals 

Turning now to the problem of bond (weakly embedded) animals, consider again 
figure 1. Using the same notation as in the previous section, it follows by inspection that 

x ( l + ( ~ l + ~ 2 ) ~ , + ~ , ~ 2 ~ 2 [ 1 ,  2 ] ) ‘ ” 2 ’ ( 1 + ( ~ , + ~ 3 ) ~ 1 +  ala3xz[l, 3])‘133) 

X (1 + (a2 a3)Xl + aza3x2[2, 3]‘2’3’)( 1 + ( a ,  a,+ a3)xI 
+ ( ala2[  1,2] + ala3[ 1,3] + a2a3[2, 3])x2 + a, aza3x3[ 1,2, 3]){13273’. (1 5) 

In the general case it is evident that the substitution for this problem may be written 

where &k is the kth element of pj and pJ is the j th  subset of A i .  Once again, in (16), 
setting a, to b and x, to x for all i, one recovers the substitution for bond animals 
classified by sites (Wilkinson 1986). 

It is possible to define auxiliary polynomials as in the previous section, but now 
they are rather complicated. If the class (see Wilkinson 1986) under consideration 
consists of connected sets Si, Si,. . . , Sb, and a tth-order bridge set A, spans some 
subset of v = {1,2, . . . , n(A)}, one defines the intersection sets Si by 

If the j th  subset of SI is pj,, (not including the empty set 0), with elements E ~ ~ , ~ ,  then 
the auxiliary polynomial for this bridge in this class is 

Si = S :  n A,. (17) 

Once again (18) simplifies to equation (4.1) in Sykes (1986b) when the labelling is 
removed. If one introduces a bond deficit, Ab, into the substitution by setting 

(19) - AlA21-lfiJl 
‘Iql - b 

and also sets ai to b for all i, then the bond percolation problem is recovered (Wilkinson 
1986). The bond c animal series have been derived using these methods, supplemented 
by the techniques described in Sykes and Wilkinson (1986b), to order fourteen bonds 
for the BCC and sc lattices (Sykes 1986b, Sykes and Wilkinson 1986a). 
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The expansions detailed in Wilkinson (1986) using (16) have been carried out for 
small n(A) and compared with published data to verify the correctness of the substitu- 
tion. In applications, however, it turns out to be more efficient to enumerate, using 
the Martin (1974) algorithm, only those species of interest (e.g. c animals, etc). Since 
at the moment no application of the very detailed data produced by the present method 
has been made, the expansion using (16) has not been carried out to the full extent 
of the available labelled code data. 

4. Analysis of data 

One expects from RG theory that the singular parts of the generating functions for the 
various types of lattice animals should have the following form: 

G( Z) - A I (  1 - Az)'-' + A,( 1 - hz)('-l)+' + B( 1 - Az)('-')+"+ . . .  (20) 
where A is the first non-analytic correction-to-scaling exponent. If A > 1 then the second 
term in (20), the analytic correction term, is the dominant correction. The difficulty 
in numerical extrapolation lies in the fact that amplitude effects may mask the true 
asymptotic behaviour, at least for small n. For animals with a specified topology, 
although (20) is presumably of the correct general form, only the dominant term in 
the generating function, 

GT( Z) - ( 1  - /.LZ)-~' (21) 
has been studied. 

It is possible to fit exact enumeration data to (20) leaving all parameters free. Not 
surprisingly this degree of freedom results in erratic behaviour of the variables of 
interest. An alternative is to assume that either A2, B or both are 0. The quality of each 
fit is then judged by the rate of convergence of A and any other parameters that are 
not set to 0. The best fit is assumed to be the one which most successfully mimics the 
(unknown) function, by virtue of successive estimates of A remaining the same. Such 
a fit is said to be 'well converged'. 

For all animal varieties (other than those with specified topology) the kinds of 
analyses carried out are as follows (for details see the references cited): (i)  biased ratio 
estimates (see Gaunt and Guttmann 1974), (ii) two-parameter fit with first-order analytic 
correction term (see Gaunt 1982), (iii) four-parameter fit with first-order non-analytic 
correction term (see Margolina et a1 1983) and (iv) four-parameter fit to the exponential 
form (2) (see Guttmann and Gaunt 1978). Note that, loosely speaking, t - 1  in (2) 
corresponds to A in (20). In all fits it is assumed that 6 = Bo = 1.5 for three-dimensional 
animal problems. 

Using the above methods of analysis it is possible to deduce reasonably precise 
estimates of the various growth parameters. All of the animal data in the appendix 
have been analysed using these methods, and in addition the bond animal data of 
Sykes (1986b) and Sykes and Wilkinson (1986a) have also been analysed. A typical 
plot ( BCC lattice, unrestricted animals) of the successive values for the different analysis 
techniques is given in figure 2. The overall growth parameter estimates are given in 
table 2 where, as usual, the quoted confidence limits for each A represent a subjective 
assessment of the rate and manner of convergence. 

The values of A for the restricted valence problem on the sc lattice are in good 
agreement with previously published estimates (Gaunt et a1 1980), as are the estimates 
for bond and site trees (Gaunt et a1 1982, Duarte and Ruskin 1981) and unrestricted 
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Figure2. Estimates of A(8) for site animals on the BCC lattice. The different analysis 
methods are discussed in the text. 

bond animals (Sykes et a1 1976) on the same lattice. The values for the restricted 
valence problem (U s 7) on the BCC lattice appear to be entirely new. The values for 
unrestricted bond and site animals agree with those given by Sykes et a1 (1976) and 
the value for site trees agrees with that given by Duarte and Ruskin (1981). Again the 
value for bond trees on the BCC lattice appears to be new. 

It is clear that in figure 2 there is little to choose between fits (ii), (iii) and (iv), 
with perhaps the latter being slightly preferable to the others. This is not the situation 
found in general. With methods (iii) and (iv) it is only possible to estimate with any 
confidence values for A or t for restricted valence site animals. It is found that the 
best overall estimate is A =  t - 1 = 1.8*0.5. For the other problems studied A and t 
behave more erratically. In view of these facts it is impossible to decide unequivocally 
as to whether or not the first-order correction term in (20) is non-analytic. The rather 
good convergence observed in all problems for type (ii) fits suggests that if B # 0 then 
A may be close to 1. This would be in accord with the above results and the findings 
of Guttmann and Gaunt (1978) that for a number of three-dimensional lattices t = 2. 
(The situation here may be similar to that described by Rapaport (1985a, b, c) for 
SAW.) It should be mentioned that type (iv) estimates appear to be least well behaved 
in bond problems, in contrast to the excellent convergence observed in two dimensions 
(Guttmann 1982). 

For lattice animals with specified topology the quality of the data only warrants 
the simplest analysis technique. For stars, combs, brushes (see Gaunt et a1 1984a) and 
tadpoles (see Gaunt et a1 1984b) biased ratio estimates have been made of the exponent 
yT, using for PNAW the sc estimate of Gaunt et a1 (1980) and the BCC estimate of 
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Table 2. Estimates of A. 

BCC bond sc site BCC site sc bond 

15.12418 A0 7.850125 10.38 f 3 10.5361 10 
A(3)  7.875 f 20 10.40 f 5 
A(4) 8.3151 10 11.103110 
N 5 )  8.350i  15 11.17518 
N 6 , 7 )  8.3501 15 11.18018 10.6021 12 

1 1 . 1  80 f 8 15.250i6 

Table 3. Estimates of yr for site animals. 

Topology Upper y + b - 1  YT 
bound 

Star b = 3 
Star b = 4 
Star b = 5 
Star b = 6 
Comb t = 2 
Comb t = 3 
Brush ( 1 , 2 )  
Brush (2,2) 
Tadpoles: 
one-tailed 
twin-tailed 

3.323 
4.323 
5.4845 
6.4845 
5.4845 
6.646 
6.646 
7.8075 

1.1615 
2.1615 

3.1615 
4.1615 
5.1615 
6.1615 
5.1615 
7.1615 
6.1615 
7.1615 

1.1615 
2.1615 

3.2 f 0.4 
4 . 0 1  0.6 
4 . 7 i l . O  
--? 
5 . 0 i 2 . 0  
-t 
-t 
-t 

1.21100.12 
2.2 f 0.5 

t No estimate possible with available data. 

Tome and Whittington (1977). The results are presented in table 3 where comparison 
with upper bounds and the conjectured form for yT are made (Gaunt er a1 1984a, b). 
These results lend further support to the conjecture of Gaunt er al (1984a, b) that 
yT = y + b - 1. In addition the assumed universality between site and bond problems 
is also supported. 

5. Conclusions 

In this paper an exact enumeration study of lattice animals classified by valence 
distribution has been made. The enumeration method used here to derive the configur- 
aiional data was the recently proposed partial generating function method of Sykes. 
It is generally acknowledged that a counting rate of around 200 clusters per millisecond 
is optimum with current direct methods. This sort of figure is, however, only applicable 
to the simplest enumerations. As noted by Sykes (1986a), a more realistic figure for 
enumerations which include a lot of detail is around five clusters per millisecond. The 
figure of 5000 clusters per millisecond achieved here enables useful new data to be 
derived and thus demonstrates the advantages of Sykes' indirect approach. 

As is to be expected, the simpler the substitution for a problem, the more rapid 
the counting rate. This is highlighted by the reduced efficiency of the partial generating 
function method applied to bond animals. Contrast this with the Martin algorithm 
(Martin 1974), for example, where there is only a small penalty in counting bond 
clusters as opposed to site clusters. Nevertheless, if the detailed information produced 
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by classifying all bond animals according to valence distribution were required for 
some application, it would seem sensible to apply Sykes’ method. 

The results of the analyses detailed in § 4 are largely supportive of previous work; 
the assumptions made for the animal exponents are clearly sensible since the various 
extrapolations are, in the main, smooth and predictable. The inclusion of the new 
data for the BCC lattice confirms the universality of these exponents. Unfortunately it 
is difficult to draw conclusions about the nature of the first-order correction-to-scaling 
term, save that A may be close to 1. In addition the values obtained for yr support 
the conjecture of Gaunt et al (1984a, b). 
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Appendix 

Table A l .  Restricted valence site animals on the BCC lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

1 
4 

28 
216 

1790 
15 587 

140 746 
1 305 920 

12 374 069 
119 223 556 

1164465225 
11502924648 

114 721 053 058 

1 
4 

28 
216 

1790  
15 587 

140 746 
1 305 920 

12 374 068 
119 223 530 

1164464748 
11502917304 

114720950640 

1 
4 

28 
216 

1790 
15 587 

140 746 
1 305 912 

12 373 868 
119219970 

1164411228 
11502184952 

114711501532 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

1 
4 

28 
216 

1790 
15 587 

140 718 
1 305 252 

12 362 624 
119 056 678 

1162236984 
11474739560 

114 376 908 424 

1 
4 

28 
216 

1790 
15 531 

139 502 
1 285 788 

12 093 424 
115 613 338 

1120191264 
10976136968 

108 577 53 1 664 

1 
4 

28 
216 

1720  
14 180 

119 740 
1 036 780 
9 156 740 

82 168 660 
747 057 236 

6867174742 
63721448832 



3440 M K Wilkinson 

Table A2. Site animals with specified topologies on the BCC lattice (for notation see Gaunt 
et al 1984a, b). 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

56 
672 

6 576 
55 576 

433 632 
3 161 016 

22 154 544 
149 871 264 

6396285080 
990 104 aao 

70 
856 

9 076 
82 160 

686 354 
5 336 336 

39 721 192 
284 314 216 

i97942a534 

56 
664 28 

7 296 312 
68 120 3 468 

589 768 32 608 
4 749 384 286 344 

18 349 604 
36 606 160 2 340 a40 

271 013 960 

6 
7 

9 
10 
11 
12 
13 

a 

564 
13 752 1032 

204 624 7 224 30 744 
2 434 380 266 448 503 832 

24 867 708 5 557 560 6 507 216 
231 031 860 as 665 5.28 71 276 952 

1 993 365 228 1104491472 705 261 024 
16 303 927 104 12 530 a54 416 6443 874 168 

5 
6 
7 
8 
9 

10 
11 
12 
13 

216 
1032 
5 952 

316 32 184 
15 292 182 352 

28 ass 320 

285 760 972 816 
5 382 120 

157 959 216 

4 076 520 

508 560 900 
48 156 084 

396 
2 544 

133 392 
884 436 

5 508 792 

206 159 232 

19 aoo 

34 198 308 

References 

Domb C 1976 J. Phys. A: Math. Gen. 9 L141 
Duarte J A M S and Ruskin H J 1981 J. Physique 42 1585 
Gaunt D S 1980 J. Phys. A: Math. Gen. 13 L97 
- 1982 Phase Transitions: Cargese 1980 ed M Levy, J C Le Guillou and J Zinn-Justin (New York: 

Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S 

Gaunt D S, Guttmann A J and Whittington S G 1979 J. Phys. A: Math. Gen. 12 75 
Gaunt D S, Lipson J E G, Martin J L, Sykes M F, Tome G M, Whittington S G and Wilkinson M K 1984a 

Gaunt D S, Lipson J E G, Tome G M, Whittington S G and Wilkinson M K 1984b J. Phys. A: Math. Gen. 

Gaunt D S ,  Martin J L, Ord G, Tome G M and Whittington S G 1980 J. Phys. A: Math. Gen. 13 1791 

Plenum) 

Green (New York: Academic) p 181 

J. Phys. A: Math. Gen. 17 211 

17 2843 



Branched polymers: exact enumeration study 3441 

Gaunt D S and Ruskin H 1978 J. Phys. A: Math. Gen. 11 1369 
Gaunt D S, Sykes M F and Ruskin H 1976 J. Phys. A: Math. Gen. 9 1899 
Gaunt D S, Sykes M F, T o m e  G M and Whittington S G 1982 J. Phys. A: Math. Gen. 15 3209 
Guttmann A J 1982 J. Phys. A: Math. Gen. 15 1987 
Guttmann A J and Gaunt D S 1978 1. Phys. A: Math. Gen. 11 949 
H a m s  A B and Lubensky T C 1981 Phys. Reo. B 24 2656 
Kert6sz J, Chakrabarti B K and Duarte J A M S 1982 J. Phys. A: Math. Gen. 15 L13 
Le Guillou J C and Zinn-Justin J 1980 Phys. Rev. B 21 3976 
Lubensky T C and Isaacson J 1979 Phys. Rev. A 20 2130 
Lubensky T C and McKane A J 1981 J. Phys. A: Math. Gen. 14 L157 
Margolina A, Djordjevic Z V, Stauffer D and Stanley H E 1983 Phys. Reo. B 28 1652 
Martin J L 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (New York: 

Parisi G and Sourlas N 1981 Phys. Rev. Lett. 46 871 
Rapaport D C 1985a J. Phys. A: Math. Gen. 18 L39 
- 1985b J. Phys. A: Math. Gen. 18 113 
- 1985c I. Phys. A: Math. Gen. 18 L175 
Ruskin H J and Duarte J A M S 1982 Phys. Reo. A 26 1791 
Stauffer D, Coniglio A and Adam H 1982 Adv. Polymer Sci. 44 103 
Sykes M F 1986a J. Phys. A: Math. Gen. 19 1007 
- 1986 1. Phys. A: Math. Gen. 19 1027 
Sykes M F, Gaunt D S and Glen M 1976 J. Phys. A: Math. Gen. 9 1705 
Sykes M F and Glen M 1976 J. Phys. A: Math. Gen. 9 87 
Sykes M F and Wilkinson M K 1986a J. Phys. A: Math. Gen. 19 3407 
- 1986b J. Phys. A: Math. Gen. 19 3415 
Tome G M and Whittington S G 1977 1. Phys. A: Math. Gen. 10 1345 
Whittington S G, Tome G M and Gaunt D S 1979 J. Phys. A: Mafb.  Gen. 12 L119 
- 1983 J. Phys. A: Math. Gen. 16 1695 
Wilkinson M K 1986 J. Phys. A: Math. Gen. 19 3425 

Academic) p 97 


